A polytropic model of quark stars

نویسنده

  • X. Y. Lai
چکیده

A polytropic quark star model is suggested in order to establish a general framework in which theoretical quark star models could be tested by observations. The key difference between polytropic quark stars and the polytropic model studied previously for normal (i.e., non-quarkian) stars is related to two issues: (i) a constant term representing the contribution of vacuum energy may be added in the energy density and the pressure for a quark star, but not for a normal star; (ii) the quark star models with non-vanishing density at the stellar surface are not avoidable due to the strong interaction between quarks. The first one implies that the vacuum inside a quark star is different from that outside, while the second one is relevant to the effect of color confinement. The polytropic equations of state are stiffer than that derived in conventional realistic models (e.g., the bag model) for quark matter, and pulsar-like stars calculated with a polytropic equation of state could then have high maximum masses (> 2M⊙). Quark stars can also be very low massive, and be still gravitationally stable even if the polytropic index, n, is greater than 3. All these would result in different mass-radius relations, which could be tested by observations. In addition, substantial strain energy would develop in a solid quark star during its accretion/spindown phase, and could be high enough to take a starquake. The energy released during star-quakes could be as high as ∼ 1047 ergs if the tangential pressure is ∼ 10−6 higher than the radial one. PACS: 97.60.Gb, 97.60.Jd, 95.30.Cq

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects

Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...

متن کامل

Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions.

We address the generalized thermodynamics and the collapse of a system of self-gravitating Langevin particles exhibiting anomalous diffusion in a space of dimension D. This is a basic model of stochastic particles in interaction. The equilibrium states correspond to polytropic configurations similar to stellar polytropes and polytropic stars. The index n of the polytrope is related to the expon...

متن کامل

The Structure of Self-gravitating Polytropic Systems with N around 5

We investigate the structure of self-gravitating polytropic stellar systems. We present a method which allows to obtain approximate analytical solutions, ψn+ǫ(x), of the nonlinear Poisson equation with the polytropic index n+ ǫ, given the solution ψn(x) with the polytropic index n, for any positive or negative ǫ such that |ǫ| ≪ 1. Application of this method to the spherically symmetric stellar ...

متن کامل

r-modes of slowly rotating non-isentropic relativistic stars

We investigate properties of r-modes characterized by regular eigenvalue problem in slowly rotating relativistic polytropes. Our numerical results suggest that discrete r-mode solutions for the regular eigenvalue problem exist only for restricted polytropic models. In particular the r-mode associated with l = m = 2, which is considered to be the most important for gravitational radiation driven...

متن کامل

Collapse of Rotating Supramassive Neutron Stars to Black Holes: Fully General Relativistic Simulations

We study the final state of the gravitational collapse of uniformly rotating supramassive neutron stars by axisymmetric simulations in full general relativity. The rotating stars provided as the initial condition are marginally stable against quasiradial gravitational collapse and its equatorial radius rotates with the Kepler velocity (i.e., the star is at the mass-shedding limit). To model the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008